Monatshefte für Chemie 115, 629-646 (1984)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1984

Cyclisierungsreaktionen von Diazoalkenyl-phosphonsäureestern Synthese von Pyrazolyl- und 2,3-Benzodiazepinylphosphonsäureestern

Elisabeth Öhler und Erich Zbiral*

Institut für Organische Chemie, Universität Wien, A-1090 Wien, Österreich

(Eingegangen 2. November 1983. Angenommen 22. November 1983)

Cyclisation Reactions of Dialkyl Diazoalkenylphosphonates. Synthesis of Dialkyl Pyrazolyl- and 2,3-Benzodiazepinyl-phosphonates

Tosylhydrazones **3** and **4** of dialkyl 3-oxo-1-alkenylphosphonates **1** and 1oxo-2-alkenylphosphonates **2**, respectively, react with aqueous sodium carbonate to give the pyrazoles **7** in excellent yields. Under analogous conditions the tosylhydrazone **9** of diethyl o-vinylbenzoyl phosphonate (**8**) affords diethyl 2hydroxy-1-indanyl phosphonate (**10**). Upon thermolysis of the sodium salt **12** generated from **9** in anhydrous DME, one obtains, depending on the reaction conditions, either the 1-H-benzodiazepinyl derivative **14** or its 5H-isomer **15**. At room temperature the diazo compound **13** cyclizes slowly to give **14**, which can be isomerized to **15** by action of base.

(Keywords: Benzo-2,3-diazepinyl-phosphonates; 1,5- and 1,7-Cyclisation; Diazo-alkenylphosphonates; Oxo-alkenylphosphonates; Pyrazolylphosphonates; Tosylhydrazones of oxo-alkenylphosphonates)

Einleitung

Eine Reihe von Arbeitsgruppen befaßte sich in den letzten Jahren mit intramolekularen Cyclisierungsreaktionen von olefinischen Diazoverbindungen, die durch Thermolyse der entsprechenden Tosylhydrazone hergestellt wurden. In Abhängigkeit von geometrischen Faktoren und vom Abstand der Doppelbindung zum Dipol wurden dabei verschiedene Heterocyclen isoliert¹.

So liefern α,β -ungesättigte Diazoverbindungen meistens in einer 6- π -Elektronen-1,5-Elektrocyclisierung Pyrazole¹⁻⁴ bzw. mit einem Pyrazolring kondensierte Systeme⁵⁻⁷. Verbindungen mit einer Doppelbindung in β,γ -Position (Allyldiazomethane) reagieren in einer 1,1-Cycload-

dition zu anellierten Aziridinen⁸. Bei zweifach ungesättigten Substraten konnte unter bestimmten geometrischen und räumlichen Randbedingungen unter Beteiligung von $8-\pi$ -Elektronen auch eine 1,7-Elektrocyclisierung zu Diazepinsystemen — meist Benzodiazepinen — erreicht werden^{5,6,9-12}.

Analoge Untersuchungen an Diazoalkenylphosphonsäureestern sind unseres Wissens bisher noch nicht durchgeführt worden. In der vorliegenden Arbeit berichten wir über die Verwendung der Tosylhydrazone ungesättigter Oxo-phosphonate zur Erzeugung der entsprechenden Diazoverbindungen und deren Cyclisierung zu Pyrazolyl- und Benzodiazepinyl-phosphonsäureestern.

Ergebnisse und Diskussion

Synthese von Pyrazolylphosphonsäureestern 7 aus den Tosylhydrazonen 3 und 4 der 3-Oxo-1-alkenyl- und 1-Oxo-2-alkenyl-phosphonsäureester 1 und 2

Im Laufe unserer Untersuchungen über die Reaktivität von 3-Oxo-1-alkenylphosphonaten 1^{13} waren wir insbesondere am Aufbau bisher unbekannter heterocyclischer Systeme¹⁴⁻¹⁷ interessiert, die vor allem wegen ihrer etwaigen biologischen Wirkung Beachtung verdienen.

Wir fanden nun, daß die 1-Tosylhydrazone 3, ebenso wie die Hydrazone 4 der entsprechenden ungesättigten Acylphosphonate 2 auf dem im Schema 1 skizzierten einfachen Weg zum Aufbau von Pyrazolylphosphonsäureestern herangezogen werden können.

Pyrazolylphosphonsäureester sind bisher durch Cycloaddition von Diazoalkanen an Alkinylphosphonate^{15,18-21} und Allenylphosphonate²¹, von Phosphoryldiazomethan an Propinsäureester²², durch Reaktion von N-Phenylsydnonen mit Alkinylphosphonaten²³ und Allenylphosphonaten²⁴, durch Cycloaddition von Diazomethan an Bromvinylphosphonate gefolgt von HBr-Abspaltung¹⁵ und auch durch elektrophile Substitution von Pyrazolen²⁵ hergestellt worden. In einer Studie über die Cu-katalysierte Zersetzung von Diazoalkylphosphonaten wurde erstmals die Cyclisierung einer dem Typ **6** entsprechenden Diazoverbindung zum Pyrazol beobachtet²⁶. Drei weitere Beispiele für den gleichen Reaktionstyp sind kürzlich bei Photolyse-Reaktionen von Phosphoryl-vinyldiazomethanen beobachtet worden²⁷.

Die Acylvinylphosphonate 1 sind durch Arbusow-Reaktion von β -Chlorvinylketonen mit Trialkyl-phosphit¹³, die ungesättigten Acylphosphonate 2 entsprechend aus α,β -ungesättigten Säurechloriden und Phosphit herstellbar. Bei beiden Reaktionen ist mit der Bildung von Nebenprodukten zu rechnen^{13,28}, die Verbindungen 1 sind jedoch auf Grund ihrer im Vergleich zu den Acylphosphonaten 2 deutlich größeren Stabilität gegenüber Solvolysereaktionen^{29,30} einfacher zu handhaben.

Dies betrifft auch die Synthese der Tosylhydrazone **3** und **4** aus den jeweiligen Carbonylverbindungen und Tosylhydrazid: Während die Acylvinylverbindungen **1** in Methanol unter Säurekatalyse umgesetzt und die Derivate **3** durch Verdünnen mit Wasser gefällt werden können, mußte bei den Acylphosphonaten **2** zur Vermeidung von Solvolysereaktionen ein wasserfreies Lösungsmittel verwendet und das Reaktionswasser azeotrop entfernt werden.

Die Geometrie der Tosylhydrazone **3** und **4** konnte nicht in allen Fällen mit Exaktheit festgestellt werden. Während bei **3** a $(R^3 = Me)$, **3** c

⁴² Monatshefte für Chemie, Vol. 115/5

 $(R^3 = iBu)$ und **3 d** $(R^3 = Ph)$ jeweils nur 1 Isomeres aufgefunden wurde, isolierten wir bei **3 b** $(R^3 = i Pr)$ ein Gemisch von syn-**3 b** und anti-**3 b** im Verhältnis 3:1, das durch SC getrennt³¹ und an Hand der Kernresonanzspektren identifiziert werden konnte. Die Zuordnung geht von der Annahme aus, daß bei isomeren Tosylhydrazonen jeweils der in sun-Anordnung zur Tosylamino-Gruppe befindliche, der C=N-Funktion benachbarte, Kohlenstoff stärker abgeschirmt ist als der in anti-Stellung befindliche³². Aus den in Tabelle 1 zusammengefaßten Daten ergibt sich eine Hochfeldverschiebung um 4 ppm für das 4-C im Isopropylrest von anti-3 b. Einen noch größeren Effekt ($\Delta \delta = 6$ ppm) registriert man für den sp²-hybridisierten Kohlenstoff C-2 in syn-3 b. In den entsprechenden Protonenspektren registrierten wir in Übereinstimmung mit den an anderen Hydrazon-Derivaten gemachten Erfahrungen³³ für die jeweils syn zum Tosylrest befindlichen α und α' -Protonen eine Tieffeldverschiebung $(0,16 \text{ ppm für CH} Me_{2}, 0,33 \text{ ppm für P} - \text{CH} = \text{CH})$. Durch Vergleich der ¹³C-Resonanzen für das 2-C bei den Verbindungen 3 a. 3 c und 3 d mit denen der Isomeren 3b schließen wir auf eine anti-Konfiguration dieser Verbindungen.

Schema 2

Bei der Umsetzung des Cyclohexenylsystems **2e** mit Tosylhydrazid isolierten wir ebenfalls ein *syn/anti*-Isomerengemisch **4e**. Bei diesem haben wir die Zuordnung der Geometrie auf Grund des hohen Polaritätsunterschieds der beiden Isomeren bei der DC in Essigester/Dichlormethan 1: 1 (*syn-***4e**: $R_F = 0,78$; *anti-***4e**: $R_F = 0,49$) getroffen. Die geringere Polarität des *syn-*Isomeren läßt sich auf Grund einer intramolekularen H-Brückenbindung zwischen NH-Proton und P(O)-Gruppe erklären. In Übereinstimmung damit änderte sich im ¹H-NMR-Spektrum von *syn-***4e** die Lage des NH-Protons ($\delta = 12,16$) auch beim Verdünnen der Lösung nicht. Bei *anti-***4e** hingegen mit dem NH-Signal bei $\delta = 8,55$ wurde auf Grund der Abschwächung der intermolekularen Wasserstoffbrücken beim Verdünnen eine Hochfeldverschiebung um 0,2 ppm beobachtet³⁴. Für **4b** ($R^2 = CHMe_2$), bei dem nur ein Isomeres aufgefunden wurde, nehmen wir auf Grund der konstanten Lage des NH-Signals

	1-C		2-C		3-C		4 -C	5-C
	δ	${}^{1}J_{\rm PC}$	δ	${}^{2}J_{\mathrm{PC}}$	δ	${}^{3}\!J_{ m PC}$	δ	δ
<i>sun-</i> 3 h	125 74	184 6	135.45	63	157 36	22.1	31.84	21.12
anti- 3 b	123.00	187.1	141.33	7.2	157.75		27.78	19.13
3 a	120.94	191.7	146.56	7.1	150.74	27.3	11.57	
3 c	121.96	188.3	147.29	6.8	153.91	26.0	34.08	26.70
3 d	124,85	190,3	145,51	7,5	$153,\!14$ $28,\!2$			_
	. 1-	Н	2-	Н	_		4-H	$5-\mathrm{H}$
	δ	${}^{2}\!J_{\mathrm{HP}}$	δ	${}^{\scriptscriptstyle 2}\!J_{\rm HP}$			δ	δ
	6.07	175	7 97	01.0			9 <i>75</i>	1.00
syn-3 b	0,07	17,0	7,27	Z1,Z	_		2,70	1,00
anti-3 D	0,30	19,0	0,94	22,1			2,91	1,08
3a	6,01	17,6	7,05	21,8	_		1,90	-
30	6,01	17,0	7,02	22,0	_		$2,\!24$	1,93
3 d	5,55	17,0	7,26	21,0	_		—	_

Tabelle 1. ¹³C- und ¹H-NMR-Spektren der Tosylhydrazone 3 (CDCl₃, TMS δ/ppm , J in Hz)

Tabelle 2. Pyrazolyl-phosphonsäureester 7 aus den Tosylhydrazonen 3 und 4

Tosyl- hydrazon	$\begin{array}{c}t \text{ bei}\\100 \ ^\circ\mathrm{C}\end{array}$	7 (% Ausb.)	Schmp. (°C)	umkristall. aus
3a	1 h	7a (85)	68-70	(Essigester)
3 b	$20\mathrm{min}$	7b (88)	66 - 69	$(\overline{PE/40}^{\circ}C)$
4 b	$20{ m min}$	7 b (87)		() /
3 c	$40{ m min}$	7 c (85)	38 - 40	(<i>PE</i> /40 °C)
3 d	$20\mathrm{min}$	7d (75)	158 - 160	(Essigester)
4 e	4 h	7 e (52)	65 - 67	$[Ether/PE (40 ^\circ C)]$

im ¹H-NMR ($\delta = 12,22$) und auf Grund des R_F -Wertes von 0,81 (Dichlormethan/Essigester 9:1) ebenfalls syn-Geometrie an.

Die in Schema 1 angedeutete Cyclisierung von 3 und 4 zu den einfachen Pyrazolylphosphonaten 7 erfolgt in einem Schritt innerhalb weniger Minuten und in sehr guten Ausbeuten in wäßriger Sodalösung bei 100 °C. Zur Bildung des bicyclischen Tetrahydroindazolylphosphonats 7 e aus dem Cyclohexenylderivat 4 e war eine Reaktionszeit von 4 h erforderlich. Die bei der Thermolyse der Na-Salze von 3 und 4 (*Bamford-Stevens*-Reaktion)³⁵ primär gebildeten Diazoverbindungen 5 und 6 sind unter diesen Bedingungen nur kurze Zeit beständig, was sich in der vorübergehenden Gelb- oder Rotfärbung der Reaktionslösung äußert. Die Ergebnisse der Cyclisierungsreaktion sind in Tabelle 2 zusammengefaßt. Zur Synthese von **7**b haben wir als zusätzlichen Strukturbeweis beide in Frage kommenden Tosylhydrazone (**3**b und **4**b) herangezogen.

Cyclisierungsreaktionen des (o-Vinyl)benzoyl-phosphonsäure-diethylester-Tosylhydrazons **9**

Nach den mit den Tosylhydrazonen 3 und 4 gemachten Erfahrungen war es von Interesse, auch die Möglichkeiten einer 1,7-Cyclisierung an Verbindungen zu untersuchen, bei denen die Konjugation um eine Doppelbindung erweitert ist und auf Grund sterischer oder elektronischer Einflüsse der sonst bevorzugte 1.5-Ringschluß zum Pyrazol nicht eintreten kann. Mit Hilfe derartiger Verbindungen ist kürzlich die Synthese verschiedener phosphorfreier Benzodiazepin-systeme gelungen^{5, 6, 9-12}. Das Oxoalkenvlphosphonat 8 war von den in Frage kommenden Strukturen dieses Typs am leichtesten, nämlich durch Arbusow-Reaktion von o-Vinvlbenzovlchlorid mit Triethvlphosphit, zugänglich. Die sehr Feuchtigkeits-empfindliche Substanz war bei Raumtemperatur nur wenige Tage beständig. Das Tosylhydrazon 9 wurde daher in Analogie zu den Derivaten des Typs 4 in wasserfreiem Benzol unter azeotroper Entfernung des Reaktionswassers hergestellt. Auf Grund der Lage des NH-Protons im ¹H-NMR-Spektrum bei $\delta = 11,90$ und der geringen Polarität von 9 bei der Chromatographie an Kieselgel $(R_F = 0.81;$ Dichlormethan/Essigester 9:1) ordnen wir 9 in Übereinstimmung mit den bei den Verbindungen 4 gemachten Erfahrungen syn-Geometrie zu.

Das Verhalten von 9 untersuchten wir zunächst unter den bei den Tosylhydrazonen 3 und 4 angewendeten Bedingungen: Nach 1stündigem Kochen in wäßriger Natriumcarbonatlösung war die durch das primär gebildete Diazophosphonat 13 auftretende Rotfärbung weitgehend verschwunden. Als Cyclisierungsprodukt isolierten wir in 44% Ausbeute ein stickstofffreies Phosphonat 10, das sich zu 11 acetylieren ließ und dem wir auf Grund von Massen- und Protonenresonanzspektren die aus Schema 3 ersichtliche 2-Hydroxyindanstruktur zuordnen.

Im MS von 10 findet man einen Molpeak von 270 und den aus der Wasserabspaltung zum Indenylphosphonat resultierenden Hauptpeak von 252. Im ¹H-NMR-Spektrum erkennt man das 1-H des Fünfringes als Dublett eines Dubletts bei $\delta = 3,52$ ppm an Hand der großen geminalen Kopplung mit dem Phosphor (${}^{1}J_{\rm PH} = 20,9$ Hz). Das 2-H erscheint auf Grund seiner fünf Kopplungspartner als sehr komplexes Signal bei 4,86 ppm. Durch Einstrahlung bei diesem Signal wurden die Signale der beiden geminalen Protonen am 3-C und das Signal

des 1-H von dublettisierten Dubletts zu Dubletts vereinfacht. Daraus wurden die Kopplungskonstanten von 2-H mit seinen Nachbarn als $J_{2,1} = 3,8$, $J_{2,3A} = 4,1$ und $J_{2,3B} = 6,4$ Hz ermittelt. Die relativ kleinen Werte für die Kopplung zwischen dem 2-H und den in *trans*-Anordnung zu diesem befindlichen Nachbarn 1-H und 3-H_A erklären sich aus den auch im *Dreiding*-Modell erkennbaren Diederwinkeln von nahezu 90°. Das cis zur OH-Gruppe befindliche 3-H_A erscheint als dublettisiertes Dublett bei 2,92, 3H_B liefert ein ähnliches Signal bei 3,34 ppm. Die geminale Kopplung entspricht mit $J_{3A,3B} = 16,6$ Hz den Erwartungen. Die entsprechenden Daten der Acetoxyverbindung 11 sind ebenfalls aus Tabelle 3 zu entnehmen. Hier fallen die im Vergleich zu 10 noch kleineren *trans*-Kopplungen ($J_{1,2} = J_{2,3A} = 1,6$ Hz) auf. Im Unterschied zu 10 konnte bei 11 aus dem als triplettisiertes Dublett eines Dubletts bei 5,73 erscheinenden 12-Liniensignal für das 2-H auch die vicinale Kopplung zum Phosphor ($J_{2,P} = 11,1$ Hz) ermittelt werden.

Tabelle 3.	¹ H-NMR-Spektren	der Indanz	plphosphonate	10 und 1	1 (CDCl ₃ ,	TMS,
		$\delta/ppm, J$	in Hz)			

	1-H	2-H	$3 \cdot H_A$	$3-H_B$	$\boldsymbol{J}_{1,\mathbb{P}}$	$J_{2,\mathbb{P}}$	${J}_{1,2}$	$\boldsymbol{J}_{2,3\mathrm{A}}$	$J_{2,3\mathrm{B}}$	$J_{\rm 3A, 3B}$
10 11	3,52 $3,66$	$4,86 \\5,73$	2,92 2,97	$3,34 \\ 3,50$	20,9 23,0	nm 11,1	$3,8 \\ 1,6$	$^{4,1}_{1,6}$	$\substack{6,4\\6,2}$	$\begin{array}{c} 16,6\\17,2\end{array}$

Ganz anders verläuft die Reaktion, wenn die Diazoalkenylverbindung 13 durch Thermolyse des Natrium-Salzes 12 in einem wasserfreien Lösungsmittel (DME) erzeugt wird: In Übereinstimmung mit den Ergebnissen bei der Cyclisierung der Tosylhydrazone von o-Acylstyrolen und -stilbenen¹¹ isolierten wir dabei in Abhängigkeit von der zur Gewinnung des Na-Salzes 12 verwendeten Basen-Menge entweder das 1-H-2,3-Benzodiazepinderivat 14 oder dessen 5-H-Isomeres 15. Bei Verwendung von nur 0.9 Äquivalenten Natriumalkoholat zur Deprotonierung von 9 führt die nachfolgende thermische Zersetzung von 12 (3 h Rückfluß in DME, Ar, Lichtausschluß) zum 1-H-2,3-Benzodiazepinylphosphonat 14, einem gelben, unter Lichtausschluß einige Tage beständigen Öl. Dieses isomerisiert in Gegenwart katalytischer Mengen Na-Alkoholat bei 70 °C innerhalb weniger Minuten quantitativ zum farblosen 5-H-Isomeren 15. Letzteres wurde bei sonst gleichen Reaktionsbedingungen auch als Hauptprodukt der 1,7-Cyclisierung von 13 isoliert, wenn bei der Synthese von 12 - gewollt oder ungewollt - ein geringer Basenüberschuß vorhanden war. 15 war - wohl auf Grund der beiden Azomethinfunktionen im Siebenring - bei Raumtemperatur nur kurze Zeit beständig. Es wandelt sich nämlich in Lösung innerhalb weniger Tage in ein nicht näher untersuchtes Trimeres um³⁶.

Bei allen Cyclisierungsversuchen wurden bei der abschließenden SC an Kieselgel neben 14 bzw. 15 auch noch geringe Mengen der Diazoalkenylverbindung 13 als gelbes Öl isoliert. Diese cyclisierte in Dichlormethan unter Lichtausschluß bei Raumtemperatur langsam zu 14 (nach 7 Tagen wurde im ¹H-NMR-Spektrum eine etwa 65% ige Umwandlung registriert).

Die Struktur der Verbindungen 13, 14 und 15 wurde vor allem aus ihren ¹H-NMR-Spektren abgeleitet:

Im Spektrum des offenkettigen **13** findet man wie bei seinen Vorläufern **8** und **9** die Signale dreier Vinylprotonen, die auf eine $CH_2 = CH$ -Gruppierung schließen lassen. Man registriert 3 Dubletts von Dubletts bei $\delta = 5,44, 5,71$ und 6,83 ppm. Dem 1'-H entspricht das Signal bei 6,83 ppm mit $J_{1',2'A} = 17,4$ bzw. $J_{1',2'B} = 11,0$ Hz für die Kopplungen mit den in *trans*- bzw. *cis*-Anordnung dazu befindlichen Vinylprotonen. Die geminale Kopplung dieser beiden $(J_{2'A,2'B} = 1,3 \text{ Hz})$ entspricht ebenfalls den Erwartungen.

Die Cyclisierung von 13 zum 1-*H*-Benzodiazepin 14 zeigt sich am Erscheinen dreier neuer Dubletts bei 3,25, 6,78 und 8,16 ppm. Das Dublett bei 3,25 entspricht dem 1-H mit einem ${}^{2}J_{\rm P,H}$ von 11,3 Hz. Eine Zuordnung der Dubletts bei 6,78 bzw. 8,16 ppm zu den Protonen am 5-C bzw. 4-C kann durch Vergleich mit den schon bekannten Daten der entsprechenden phosphorfreien 1-*H*-2,3-Benzodiazepine¹¹ 16 und 17 getroffen werden (vgl. Schema 4 und Tab. 4). Mit Hilfe der NMR-Daten von 16 und 17 kann auch auf die Konformation von 14 geschlossen werden. Im Protonenspektrum von 17 wurde eine außerordentlich hohe Shift-Differenz für die geminalen Protonen am 1-C registriert ($\delta = 2,99$ für H_{endo} und 6,41 für H_{exo})¹¹. Aus der Lage des 1-*H*-Signals in 14 (3,25) und 16 (3,89) läßt sich ableiten, daß sich der sterisch anspruchsvolle Phosphonatrest in 14 ebenso wie der Phenylsubstituent in 16 in *exo*-Position befinden muß.

Bei der basenkatalysierten Umwandlung von 14 in 15 erscheinen zwei markante dublettisierte Dubletts bei 2,83 und 3,46 ppm, die den Signalen der beiden geminalen Wasserstoffe am 5-C entsprechen. Lage und Aufspaltungsbild dieser Signale $(J_{5,5'} = 12,5, J_{4,5} = J_{4,5'} = 5 \text{ Hz})$ stimmen mit den entsprechenden Werten des 5-H-Diazepins 18 überein¹¹. Das Vinylproton am 4-C erscheint überraschenderweise als teilweise vom Signal des 6-H überlagertes Quartett bei 7,19 ppm mit

Ver	rb.	R	1-H _{endo}	1-H _{exo}	4-H	5-H	5′-H	$J_{4,5}$	$J_{4,5'}$	$J_{5,5^{\prime}}$
14 16 17 15 18		$\begin{array}{c} P(O)(OEt)_2 \\ Ph \\ H_{exo} \\ P(O)(OEt)_2 \\ Ph \end{array}$	3,25 d ^a 3,89 s 2,99 d ^b —	6,41 d ^b	$\begin{array}{c} 8,16{\rm d} \\ 8,25{\rm d} \\ 8,15{\rm d} \\ 7,19{\rm q}^{\rm c} \\ {\rm nm} \end{array}$	$\begin{array}{c} 6,78\mathrm{d} \\ 6,81\mathrm{d} \\ 6,70\mathrm{d} \\ 2,83\mathrm{dd} \\ 3,02^{\mathrm{d}} \end{array}$	- 3,46 dd 3,42 ^d	9,2 9,0 9,0 5,0 5,0		- 12,5 12,5
	$ \overset{a 2 J}{\overset{b}{}} J_{e} \\ \overset{c}{} J_{4} \\ \overset{d}{} A $	$J_{P,H} = 11.3 \text{ Hz}$ $J_{xxo,endo} = 9 \text{ Hz}$ $J_{P} = J_{4,5} = J_{B}$ B Teil eines	z. $_{4,5'} = 5 H$ ABX-Sys	z. stems.						

Tabelle 4. Vergleich der ¹H-NMR-Spektren der 2,3-Benzodiazepinylphosphonate 14 und 15 (250 MHz, CDCl_3 , TMS) mit den Verbindungen 16, 17 und 18 (100 MHz, CDCl_3)¹¹ (δ /ppm, J in Hz)

J = 5 Hz. Dies läßt sich nur durch eine über 5 Bindungen reichende Fernkopplung des Phosphors mit dem 4-H erklären, deren Größe mit der Kopplung zu den beiden Protonen am C-5 übereinstimmt $(J_{4,P} = J_{4,5} = J_{4,5'} = 5,0$ Hz).

Dank

Der Fonds zur Förderung der wissenschaftlichen Forschung in Österreich ermöglichte diese Arbeit im Rahmen des Projektes Nr. 4009.

Wir danken Herrn Dr. A. Nikiforov und Herrn H. Bieler für die Aufnahme der Massenspektren, Herrn Dr. W. Robien und Herrn Dr. W. Silhan für die Aufnahme der 250 MHz-Kernresonanzspektren und Frl. S. Kotzinger für die präparative Mitarbeit.

Experimenteller Teil

DC: Fertigplatten (Merck), Kieselgel 60 F_{254} . Schichtdicke 0,25 mm. SC: Kieselgel 60 (Merck), Korngröße 0,063 -0.2 mm. Schmelzpunkte: Heizmikroskop nach *Kofler*, unkorrigiert. ¹H-NMR-Spektren: Varian EM 360, XL-100 und Bruker WM 250. ¹³C-NMR-Spektren: Bruker WM 250 (Lösungsmittel CDCl₃, innerer Standard *TMS*). MS: Varian, CH-7.

Abkürzungen: DME = 1,2-Dimethoxyethan; PE: Petrolether.

(E)-3-Oxo-1-alkenylphosphonsäure-diisopropylester¹³ (1 a) – (1 d)

Allgemeine Vorschrift: Die Lösungen von 110 mmol β -Chlorvinylketon und 20,8 g (100 mmol) Triisopropylphosphit in je 100 ml wasserfreiem Toluol werden in einem Rundkolben mit absteigendem Kühler unter Rühren und Ar langsam erwärmt. Sobald die Bildung von Isopropylchlorid einsetzt, wird bei gleicher Temp. weitergerührt. Nach dem Abklingen der Reaktion wird das Toluol abdestilliert, anschließend die Badtemp. kontinuierlich bis 150 °C erhöht und ca. 20 min bei dieser Temp. weitergerührt. Dann werden leichtflüchtige Anteile im Wasserstrahlvak. entfernt (Badtemp. bis 100 °C) und der Rückstand, wie bei den einzelnen Verbindungen angegeben, aufgearbeitet.

(E)-3-Oxo-1-butenylphosphonsäure-diisopropylester $(1 a)^{13}$

(E)-4-Methyl-3-oxo-1-pentenylphosphonsäure-diisopropylester (1 b)

Reinigung durch zweimaliges Fraktionieren an der Ölpumpe. Sdp. 92 °C/0,01 Torr. Ausb. 57%. ¹H-NMR (250 MHz): 1,17 [d; 6 H, C–CH(C**H**₃)₂], 1,34 und 1,39 [2 d; 12 H, OCH(C**H**₃)₂], 2,86 (sept; 1 H, CO–CH*Me*₂), 4,74 (m; 2 H, OCH*Me*₂), 6,77 (dd; $J_{1,2} = 16,7, J_{1,P} = 18,5$ Hz; 1 H, 1-H), 7,08 (dd; $J_{1,2} = 16,7, J_{2,P} = 20,7$ Hz). C₁₂H₂₃O₄P (262,3). Ber. C54,94, H8,85. Gef. C54,80, H 8,90.

Cyclisierungsreaktionen

(E)-5-Methyl-3-oxo-1-hexenyl-phosphonsäure-diisopropylester (1 c)

Reinigung durch Destillieren aus einem Kugelrohr an der Ölpumpe. Badtemp. 105–110 °C; Ausb. 42%. ¹H-NMR (250 MHz): 0.96 [d; 6 H, C-CH(CH₃)₂], 1,34 und 1,38 [2 d; 12 H, OCH(CH₃)₂], 2,20 (m; 1 H, C-CHMe₂), 2,51 (d; 2 H, CH₂), 4,73 (m; 2 H, OCHMe₂), 6,70 (dd; $J_{1,2} = 17,2, J_{1,P} = 18,1$ Hz; 1 H, 1-H), 6,93 (dd; $J_{1,2} = 17,2, J_{2,P} = 21,2$ Hz; 1 H, 2-H). C₁₃H₂₅O₄P (276,3). Ber. C 56,51, H 9,12. Gef. C 56,30, H 8,98.

(E)-3-Oxo-3-phenyl-1-propenyl-phosphonsäure-diisopropylester (1 d)

Reinigung durch zweimaliges Destillieren aus einem Kugelrohr an der Ölpumpe. Badtemp. 160-180 °C; Ausb. $50\%^{13}$.

(E)-4-Methyl-1-oxo-2-penten-1-yl-phosphonsäure-diisopropylester (2 b)

Zu einer Lösung von 7,90 g (59 mmol) 4-Methyl-2-penten-säurechlorid³⁶ in 120 ml wasserfreiem Benzol wurde unter Ar und Rühren bei 0-5 °C eine Lösung von 12,77 g (61 mmol) Triisopropylphosphit in 30 ml Benzol getropft. Nach 4 h bei Raumtemp. wurden nacheinander Isopropylchlorid und Benzol langsam abdestilliert und der Rückstand an der Ölpumpe aus einem Kugelrohr (Badtemp. 100–130 °C/0,01 Torr) destilliert. Rohausb. 7,64 g (49%). Das rohe, laut ¹H-NMR-Spektrum und CH-Analyse nicht ganz einheitliche **2b** wurde ohne weiteres ins Tosylhydrazon **4b** umgewandelt. ¹H-NMR (250 MHz): 1,11 [d; 6 H, C-CH(CH₃]₂, 1,37 [d; 12 H, OCH(CH₃)₂], 2,55 (dsept; 1 H, 4-H), 4,77 (m; 2H, OCHMe₂), 6,41 (ddd, $J_{2,3} = 16,0, J_{2,4} = 2,0, J_{2,P} = 13,2$ Hz; 1 H, 2-H); 7,42 (dd, $J_{3,2} = 16,0, J_{3,4} = 7,2$ Hz; 1 H, 3-H).

1-Cyclohexenyl-carbonyl-phosphonsäure-diethylester (2 e)

Zu einer Lösung von 6,50 g (45 mmol) 1-Cyclohexencarbonsäurechlorid³⁷ in 100 ml wasserfreiem Ether wurde unter Ar und Rühren bei -5 °C eine Lösung von 8,0 g (48 mmol) frisch destilliertem Triethylphosphit in 50 ml Ether getropft. Nach 16 h bei Raumtemp. wurden Isopropylchlorid und Ether langsam abdestilliert und der Rückstand an der Ölpumpe aus einem Kugelrohr destilliert. Bei einer Badtemp. von 110–130 °C/0,01 Torr wurden 8,10 g (73%) rohes **2e** erhalten, das ohne weiteres zum Tosylhydrazon **4e** umgesetzt wurde. Zur Gewinnung einer Analysenprobe wurden 200 mg rohes **2e** rasch und bei Raumtemp. <10 °C über 20 g Kieselgel (Laufmittel Dichlormethan: Essigester 1:1) filtriert. ¹H-NMR (250 MHz): 1,39 (t; 6 H, OCH₂CH₃), 1,67 (m; 4 H, 4-H + 5-H), 2,22 (m; 2 H), 2,39 (m; 2 H), 4,23 (m; 4 H, OCH₂CH₃), 7,82 (m; 1 H, 2-H). C₁₁H₁₉O₄P (246,3). Ber. C 53,64, H 7,79. Gef. C 53,75, H 7,75. Molmasse 246 (MS).

Tosylhydrazone **3** der 3-Oxo-1-alkenylphosphonate **1**

Allgemeine Vorschrift: Eine Lösung von 10,0 mmol 1 und 2,24 g (12,0 mmol) Tosylhydrazid in 50 ml Methanol wird nach Zugabe von einigen Tropfen konz. Salzsäure 15 h bei Raumtemp. belassen. Die Tosylhydrazone **3** werden durch Zugabe von Wasser zur Kristallisation gebracht, abgesaugt, im Vak. getrocknet und als Rohprodukte weiterverwendet.

3-[2-[(4-Methylphenyl)sulfonyl]hydrazono]-1-butenylphosphonsäurediisopropylester (3 a)

Ausb. 81%, Schmp. des Rohprodukts 155–158 °C. ¹H-NMR (250 MHz): 1,29 und 1,33 [2 d; 12 H, CH(CH₃)₂], 1,90 (s; 3 H, CH₃–C=N), 2,45 (s; 3 H, CH₃–Ar), 4,68 (m; 4 H, OCHMe₂), 6,01 (dd, $J_{1,2} = 17.6, J_{1,P} = 16,5$ Hz; 1 H, 1-H), 7,05 (dd, $J_{2,1} = 17.6, J_{2,P} = 21,8$ Hz; 1 H, 2-H), 7,28 (d; 2 H, Aromaten-H), 7,85 (d; 2 H, Aromaten-H), 8,50 (s; 1 H, mit D₂O austauschbar, NH). C₁₇H₂₇N₂O₅PS (402, 5). Ber. C 50,72, H 6,77, N 6,96. Gef. C 50,81, H 6,64, N 6,96.

4-Methyl-3-[2-[(4-methylphenyl)sulfonyl]hydrazono]-1-pentenylphosphonsäure-diisopropylester (syn + anti)-(**3** b)

Gesamtausb. 4,10 g (95%). $C_{19}H_{31}N_2O_5PS$ (430,6). Ber. C53,00, H7,27, N6,51. Gef. C52,69, H7,10, N6,56. 430 mg (1,0 mmol) des rohen **3b** wurden durch SC an Kieselgel (Laufmittel Dichlormethan/Essigester 1:1) in 300 mg syn-**3b** ($R_F = 0,67$, Schmelzbereich 135–144 °C³¹) und 100 mg anti-**3b** ($R_F = 0,53$, Schmelzbereich 148–153 °C³¹) getrennt.

$$\begin{split} syn\textbf{-3} \, \mathbf{b}:\, ^1\mathrm{H}\text{-NMR} \, (250 \, \mathrm{MHz}):\, 1,06 \, [\mathrm{d}; 6 \, \mathrm{H}, \mathrm{C}-\mathrm{CH}(\mathrm{CH}_3)_2],\, 1,28 \, \mathrm{und} \, 1,32 \, [2 \, \mathrm{d};\\ 12 \, \mathrm{H},\, \mathrm{OCH}(\mathrm{CH}_3)_2],\, 2,41 \, (\mathrm{s};\, 3 \, \mathrm{H},\, \mathrm{CH}_3\mathcal{A}r),\, 2,75 \, (\mathrm{sept};\, 1 \, \mathrm{H},\, \mathrm{C}-\mathrm{CH}\mathcal{M}e_2),\, 4,70 \, (\mathrm{m};\\ 2 \, \mathrm{H},\, \mathrm{OCH}(\mathrm{CH}_3)_2],\, 2,41 \, (\mathrm{s};\, 3 \, \mathrm{H},\, \mathrm{CH}_3\mathcal{A}r),\, 2,75 \, (\mathrm{sept};\, 1 \, \mathrm{H},\, \mathrm{C}-\mathrm{CH}\mathcal{M}e_2),\, 4,70 \, (\mathrm{m};\\ 2 \, \mathrm{H},\, \mathrm{OCH}\mathcal{M}e_2),\, 6,07 \, (\mathrm{t};\, J_{1,\mathrm{P}}=J_{1,2}=17,5 \, \mathrm{Hz};\, 1 \, \mathrm{H},\, 1\text{-H}),\, 7,27 \, \, (\mathrm{dd},\, J_{2,\mathrm{P}}\approx 21,\\ J_{2,1}=17,5 \, \mathrm{Hz};\, 1 \, \mathrm{H},\, 2\text{-H}),\, 7,29 \, (\mathrm{d};\, 2 \, \mathrm{H},\, \mathrm{Aromaten-H}),\, 7,87 \, (\mathrm{d};\, 2 \, \mathrm{H},\, \mathrm{Aromaten-H}),\\ 9,55 \, (\mathrm{s};\, 1 \, \mathrm{H},\, \mathrm{mit}\, \mathrm{D}_2\mathrm{O}\, \mathrm{austauschbar},\, \mathrm{NH}).\,\,^{13}\mathrm{C}\text{-NMR} \, (250 \, \mathrm{MHz},\, \mathrm{Aceton-}d_6):\, 21,12 \, [\mathrm{C}-\mathrm{C}(\mathrm{CH}_3)_2],\,\, 31,84 \, \, (\mathrm{C}-\mathrm{C}\mathcal{M}e_2),\,\, 125,74 \, \, (^{1}J_{\mathrm{PC}}=184,6 \, \mathrm{Hz};\,\, 1\text{-C}),\,\, 135,45 \, (^{2}J_{\mathrm{PC}}=6,3 \, \mathrm{Hz},\, 2\text{-C}),\,\, 157,36 \,\, (^{3}J_{\mathrm{PC}}=22,1 \, \mathrm{Hz},\, 3\text{-C}). \end{split}$$

anti-**3** b: ¹H-NMR (250 MHz): 1,08 [d; 6 H, C-CH(CH₃)₂], 1,29 und 1,34 [2 d; 12 H, OCH(CH₃)₂], 2,44 (s; 3 H, CH₃Ar), 2,91 (sept; 1 H, C-CHMe₂), 4,65 (m; 2 H, OCHMe₂), 6,35 (dd, $J_{1,P} = 19.6$, $J_{1,2} = 17.2$ Hz; 1 H, 1-H), 6,94 (dd, $J_{2,P} = 22.1$, $J_{2,1} = 17.2$ Hz; 1 H, 2-H), 7,31 (d; 2 H, Aromaten-H), 7,84 (d; 2 H, Aromaten-H), 8,64 (s; 1 H; mit D₂O austauschbar, NH). ¹³C-NMR (250 MHz, Aceton-d₆): 19,13 [C-C(CH₃)₂], 27,78 (C-CMe₂), 123,08 (¹J_{PC} = 187,1 Hz; 1-C), 141,33 (²J_{PC} = 7,2 Hz, 2-C), 157,75 (3-C).

Zur Synthese von 7 b wurde das rohe Isomerengemisch verwendet.

5-Methyl-3-[2-[(4-methylphenyl)sulfonyl]hydrazono]-1-hexenyl-phosphonsäurediisopropylester (3 c)

Ausb. 84%, Schmp. 145–148 °C. ¹H-NMR (250 MHz): 0,86 [d; 6 H, C–CH(C**H**₃)₂], 1,29 und 1,35 [2 d; 12 H, OCH(C**H**₃)₂], 1,93 (m; 1 H, CH₂–C**H** Me_2), 2,24 (d; 2 H, C**H**₂–CH Me_2), 2,45 (s; 3 H, CH₃), 4,68 (m; 2 H, OCH Me_2), 6,01 (t; $J_{1,P} = J_{1,2} = 17,0$ Hz; 1 H, 1-H), 7,02 (dd, $J_{2,P} = 22,0, J_{1,2} = 17,0$ Hz; 1 H, 2-H), 7,32 (d; 2 H) und 7,84 (d; 2 H) (Aromaten-H), 8,64 (s; 1 H, mit D₂O austauschbar, NH). ¹³C-NMR (250 MHz, Aceton- d_6): 21,41 (CH₃Ar), 22,51 [C–C(CH₃)₂], 24,08, 24,15, 24,20 und 24,26 [OCH(CH₃)₂], 26,70 (5-C), 34,08 (4-C), 70,94 ($J_{PC} = 5.5$ Hz, OCH Me_2), 121,96 ($^{1}J_{PC} = 188,3$ Hz, 1-C), 147,29 ($^{2}J_{PC} = 6.8$ Hz, 2-C), 153,91 ($^{3}J_{PC} = 26,0, C=N$). C₂₀H₃₃N₂O₅PS (44,6). Ber. C 54,02, H 7,50, N 6,30. Gef. C 54,14, H 7,51, N 6,31.

3-[2-[(4-Methylphenyl)sulfonyl]hydrazono]-3-phenyl-1-propenylphosphonsäure-diisopropylester (3 d)

Ausb. 3,70 g (80%). Rohschmp. 130 – 150 °C. ¹H-NMR (250 MHz): 1,26 und 1,30 [2 d; 12 H, OCH(C**H**₃)₂], 2,47 (s; 3 H, CH₃Ar), 4,64 (m; 2 H, OCHMe₂), 5,55 (t, $J_{1,P} = J_{1,2} = 17,0$ Hz; 1 H, 1-H), 7,05 (m; 2 H, Aromaten-H), 7,26 (dd,

 $\begin{array}{l} J_{2,\mathrm{P}}=21,0,\,J_{1,2}=17,0\,\mathrm{Hz};\,1\,\mathrm{H},\,2\mathrm{-H}),\,7,34~(\mathrm{d};\,2\,\mathrm{H},\,\mathrm{Aromaten-H}),\,7,50~(\mathrm{m};\,3\,\mathrm{H},\,\mathrm{Aromaten-H}),\,7,72~(\mathrm{s};\,1\,\mathrm{H},\,\mathrm{mit}\,\mathrm{D}_{2}\mathrm{O}\,\mathrm{austauschbar},\,\mathrm{NH}),\,7,79~(\mathrm{d};\,2\,\mathrm{H},\,\mathrm{Aromaten-H}),\,7,79~(\mathrm{d};\,2\,\mathrm{H},\,\mathrm{Aromaten-H}),\,7,9~(\mathrm{d};\,2\,\mathrm{H},\,\mathrm{Aroma$

4-Methyl-1-[2-[(4-methylphenyl)sulfonyl]hydrazono]-2-penten-1-ylphosphonsäure-diisopropylester (4b)

Eine Lösung von 2,62 g (10,0 mmol) rohem **2 b** und 2,23 g (12,0 mmol) Tosylhydrazid in 150 ml wasserfreiem Benzol wurde in einem Rundkolben mit Wasserabscheider 4 h zum Sieden erhitzt, danach im Vak. eingedampft und der Rückstand über 150 g Kieselgel (Laufmittel Dichlormethan/Essigester 9:1) filtriert. Ausb. 2,32 g (54%). ¹H-NMR (250 MHz): 1,02 [d; 6 H, C-CH(CH₃)₂], 1,17 und 1,32 [2 d; 12 H, OCH(CH₃)₂], 2,37 (m; 1 H, 4-H), 2,43 (s; 3 H, CH₃-Ar), 4,50 (m; 2 H, OCHMe₂), 6,04 (dd, $J_{2,3} = 17,0, J_{2,P} = 20,5$ Hz; 1 H, 2-H), 6,28 (dd, $J_{2,3} = 17,0, J_{3,4} = 6,8$ Hz; 1 H, 3-H), 7,30 (d; 2 H, Aromaten-H), 7,81 (d; 2 H, Aromaten-H), 12,22 (s; 1 H, mit D₂O austauschbar, NH).

1-Cyclohexenyl-[2-[(4-methylphenyl)sulfonyl]hydrazono]methylphosphonsäure-diethylester (4 e)

Eine Lösung von 2,46 g (10,0 mmol) rohem **2e** und 2,24 g (12,0 mmol) Tosylhydrazid in 50 ml wasserfreiem Methanol wurde nach Zugabe von einigen Tropfen konz. Salzsäure 48 h bei Raumtemp. stehengelassen. Dann wurde im Vak. eingedampft. 400 mg des Rückstandes wurden über 40 g Kieselgel (Laufmittel Dichlormethan/Essigester 1:1) chromatographiert und lieferten 170 mg syn-**4e** ($R_F = 0.78$), Schmelzintervall 45-65 °C³¹ und 150 mg anti-**4e** ($R_F = 0.49$), Schmelzintervall 65-80 °C³¹.

 $syn\text{-}4\,e\text{:}\,^1\text{H}\text{-}\text{NMR}$ (60 MHz): 1,16 (t; 6 H, OCH_2CH_3), 1,53 (m; 4 H, 4-H + 5-H), 2,10 (m; 4 H, 3-H + 6-H), 2,38 (s; 3 H, CH_3 - Ar), 3,91 (m; 4 H, OCH_2CH_3), 6,17 (m; 1 H, 2-H), 7,09 und 7,63 (AB-System, 4 H, Aromaten-H), 12,16 (s; 1 H, mit D_2O austauschbar, NH). Lage des scharfen NH-Signals ändert sich beim Verdünnen nicht³⁴.

anti-4e: ¹H-NMR (250 MHz): 1,27 (t; 6 H, OCH₂CH₃), 1,60 (m; 4 H, 4-H + 5-H), 2,06 (m; 4 H, 3-H + 6-H), 2,37 (s; 3 H, CH₃-Ar), 3,93 (m; 4 H, OCH₂CH₃), 5,67 (m; 1 H, 2-H), 7,17 und 7,65 (AB-System, 4 H, Aromaten-H), 8,55 (br. s; 1 H, mit D₂O austauschbar, NH). Lage des breiten NH-Signals ändert sich beim Verdünnen³⁴.

Zur Synthese von 7 e wurde das rohe Isomerengemisch verwendet.

Darstellung der Pyrazolylphosphonsäureester 7

Allgemeine Vorschrift: Eine Suspension von 10,0 mmol **3** bzw. **4** und 1,03 g (12,0 mmol) $\operatorname{Na_2CO_3}$ in 25 ml Wasser wird unter Ar und Rühren zum Sieden erhitzt, bis laut DC (Dichlormethan/Essigester 1:1) kein Tosylhydrazon mehr nachzuweisen und die gelbe Farbe der intermediären Diazoverbindung **5** verschwunden ist (20 min - 4 h). Dann wird, wie bei den einzelnen Verbindungen angegeben, aufgearbeitet.

3-Methyl-5-pyrazolyl-phosphonsäure-diisopropylester (7 a)

Aus **3a**: Nach 1 h Reaktionszeit wird **7a** durch mehrmaliges Ausschütteln der eingeengten Reaktionslösung mit Dichlormethan, Trocknen über Na₂SO₄ und Abdampfen isoliert. Ausb. 2,10 g (85%). Aus Essigester/Ether farblose

Kristalle vom Schmp. 68–70 °C. ¹H-NMR (100 MHz): 1,28 [d; 6 H, OCH(CH₃)₂], 1,36 [d; 6 H, OCH(CH₃)₂], 2,34 (s; 3 H, CH₃), 4,72 (m; 2 H, OCH Me_2), 6,42 (d; 1 H, 4-H); 12,53 (br. s; 1 H, mit D₂O austauschbar, NH). C₁₀H₁₉N₂O₃P (246,3). Ber. C 48,76, H 7,79, N 11,37. Gef. C 48,76, H 7,59, N 11,36. Molmasse 246 (MS).

3-Isopropyl-5-pyrazolyl-phosphonsäure-diisopropylester (7b)

a) Aus **3 b**: Nach 20 min Reaktionszeit wird das als farbloses Õl abgeschiedene **7 b** mit Dichlormethan ausgeschüttelt. Die über Na₂SO₄ getrocknete Lösung wird im Vak. abgedampft und der Rückstand mit PE (40 °C) zum Kristallisieren gebracht. Ausb. 2,40 g (88%); farblose Kristalle vom Schmp. 66–69 °C. ¹H-NMR (250 MHz): 1,27 [d; 6 H, C–CH(CH₃)₂], 1,30 [d; 6 H, OCH(CH₃)₂], 1,36 [d; 6 H, OCH(CH₃)₃], 3,07 (sept; 1 H, C–CHMe₂), 4,74 (m; 2 H, OCHMe₂), 6,51 (d; 1 H, 4-H), 10,74 (br. s; mit D₂O austauschbar, NH). C₁₂H₂₃N₂O₃P (274,4). Ber. C52,53, H 8,47, N 10,21. Gef. C52,36, H 8,22, N 10,05. Molmasse 274 (MS).

b) Aus 4 b: Reaktionszeit 20 min; Aufarbeitung wie unter a); Ausb. 87%.

3-(2-Methyl-1-propyl)-5-pyrazolyl-phosphonsäure-diisopropylester (7 c)

 $Aus \mathbf{3c}$: Nach 40 min wurde mit Dichlormethan ausgeschüttelt. Der aus der organischen Lösung isolierte Rückstand wurde über 50 g Kieselgel filtriert (Laufmittel Essigester) und lieferte nach Verreiben mit PE (40 °C) 85% 7 c; farblose Kristalle vom Schmp. 38–40 °C. ¹H-NMR (250 MHz): 0,91 [d; 6 H, C-CH(C \mathbf{H}_{3})₂], 1,26 und 1,35 [2 d; 12 H, OCH(C \mathbf{H}_{3})₂], 1,94 (m; 1 H, C-C $\mathbf{H}Me_2$), 2,59 (d; 2 H, CH₂), 4,74 (m; 2 H, OCH Me_2), 6,46 (d, $J_{\rm HP} \approx 1$ Hz; 1 H, 4-H), 12,66 (br. s; 1 H, mit D₂O austauschbar, NH). C₁₃H₂₅N₂O₃P (288,4). Ber. C54,14, H 8,76, N 9,72. Gef. C54,45, H 8,74, N 9,66.

3-Phenyl-5-pyrazolyl-phosphonsäure-diisopropylester (7d)

Aus **3d:** Nach 20 min wurde das Reaktionsgemisch gekühlt und **7e** abgesaugt. Ausb. 2,30 g (75%). Aus Essigester farblose Kristalle vom Schmp. 158-160 °C. ¹H-NMR (100 MHz): 1,31 [d; 6 H, OCH(CH₃)₂], 1,41 [d; 6 H, OCH(CH₃)₂], 4,78 (m; 2 H, OCHMe₂), 6,98 (d; 1 H, 4-H), 7,36 (m; 3 H, Aromaten-H), 7,83 (m; 2 H, Aromaten-H), 13,25 (br. s; 1 H, mit D₂O austauschbar, NH). C₁₅H₂₁N₂O₃P (308,4). Ber. C58,42, H 6,88, N 9,09. Gef. C58,40, H 6,80, N 9,09.

4,5,6,7-Tetrahydro-1H-indazol-3-yl-phosphonsäure-diethylester (7e)

Aus einer rohen Mischung von syn-4 e + anti-4 e: Nach 4 h Kochen unter Ar wurde mit Dichlormethan ausgeschüttelt, die über Na₂SO₄ getrocknete organische Lösung im Vak. eingedampft und der Rückstand durch Filtration über Kieselgel (Laufmittel Essigester) gereinigt. Ausb. 52%, aus Ether/PE (40 °C) farblose Kristalle vom Schmp. 65–67 °C. ¹H-NMR (100 MHz): 1,34 (t; 6 H, CH₂CH₃), 1,77 (m; 4 H, 5-H + 6-H), 2,70 (m; 4 H, 4-H + 7-H), 4,14 (m; 4 H, OCH₂CH₃), 11,74 (br. s; 1 H, mit D₂O austauschbar, NH). C₁₁H₁₉N₂O₃P (258,3). Ber. C 51,15, H 7,43, N 10,85. Gef. C 51,25, H 7,17, N 10,79. Molmasse 258 (MS).

(2-Ethenyl-benzoyl)-phosphonsäure-diethylester (8)

Zu einer Lösung von 5,26g (31,49 mmol) *o*-Vinylbenzoylchlorid³⁸ in 80 ml wasserfreiem Ether wurde unter Ar und Rühren bei 0 °C eine Lösung von 5,40g

(32,5 mmol) Triethylphosphit getropft. Nach 15 h bei Raumtemp. wurden zuerst Isopropylchlorid und Ether bei Normaldruck, dann höhersiedende Anteile bei 12 Torr (Badtemp. 130 °C) entfernt und zuletzt 8 aus einem Kugelrohr (Badtemp. 130 °C/0,01 Torr) destilliert. Ausb. 6,95 g (82%) 8, hellgelbes Öl, das nicht analysenrein erhalten werden konnte und sich bei Raumtemp. in wenigen Tagen zersetzte. ¹H-NMR (250 MHz): 1,38 (t; 6 H, CH₂CH₃), 4,27 (quint. 4 H, OCH₂CH₃), 5,39 (dd, $J_{1',2'B} = 11,0, J_{2'A,2'B} = 1,4$ Hz; 1 H, 2'-H^B), 5,67 (dd, $J_{1',2'A} = 17,4, J_{2'A,2'B} = 1,4$ Hz; 1 H, 2'-H^A), 7,22 (dd, $J_{1',2'A} = 17,4, J_{1',2'B} = 11,0$ Hz, 1 H, 1'-H), 7,43 (dt; 1 H, 5-H), 7,55 (dt; 1 H, 4-H), 7,60 (dt; 1 H, 1 H, 3-H), 8,40 (dd; 1 H, 6-H).

syn-(2-Ethenyl-phenyl)-[[2-(4-methylphenyl)sulfonyl]hydrazono]methylphosphonsäure-diethylester (9)

Eine Lösung von 1,07 g (4,0 mmol) 8 und 900 mg (4,8 mmol) Tosylhydrazid in 100 ml wasserfreiem Benzol wurde in einem Rundkolben mit Wasserabscheider 6,5 h zum Sieden erhitzt. Nach 16 h bei Raumtemp. wurde das Benzol abdestilliert und der Rückstand über 200g Kieselgel (Laufmittel Dichlormethan/Essigester 9:1) chromatographiert ($R_F = 0.81$). Ausb. 1,20 g (69%) 9; aus Ether farblose Kristalle vom Schmp. 81 – 82 °C. ¹H-NMR (250 MHz): 1,22 (t; 6 H, CH₂CH₃), 2,46 (s; 3 H, CH₃Ar), 4,03 (m; 4 H, OCH₂CH₃), 4,92 (dd, $J_{1/2'B} = 11.1, J_{2'A,2'B} \approx 1 \text{ Hz}; 1 \text{ H}, 2'-\text{H}^{\text{B}}$), 5,54 (dd, $J_{1/2'A} = 18.1, J_{2'A,2'B} \approx 1 \text{ Hz}; 1$ H, 2'-H^B), 5,54 (dd, $J_{1/2'A} = 18.1, J_{2'A,2'B} \approx 1 \text{ Hz}; 1$ H, 2'-H^B), 7,84 (d; 2 H, Aromaten-H); 1,90 (s; 1 H, mit D₂O austauschbar, NH). C₂₀H₂₅N₂O₅PS (436,5). Ber. C55,03, H 5,78, N 6,42, S 7,34. Gef. C54,93, H 5,75, N 6,40, S 7,20. Molmasse 436 (MS).

2 - (R,S) - Hydroxy - indan - 1 - (R,S) - yl - phosphonsäure - diethylester (10)

436 mg (1,0 mmol) 9 und 127 mg (1,2 mmol) Na₂CO₃ wurden in 5 ml Wasser zum Sieden erhitzt. Dabei wurde die Lösung zuerst intensiv rot, dann allmählich heller. Nach 1h wurde mit Dichlormethan ausgeschüttelt, die Lösung über Na₂SO₄ getrocknet, im Vak. eingedampft und der Rückstand über 20 g Kieselgel (Laufmittel Dichlormethan/Essigester 1:1) chromatographiert. Ausb. 120 mg (44%). ($R_F = 0.15$); aus PE (40 °C) farblose Kristalle vom Schmp. 46 – 47 °C. ¹H-NMR (250 MHz): 1,22 (t; 3 H, OCH₂CH₃), 1,28 (t; 3 H, OCH₂CH₃); 2,92 (dd, $J_{3A,3B} = 16.6, J_{3A,2} = 4.1$ Hz; 1 H, 3-H^A); 3,34 (dd, $J_{3A,3B} = 16.6, J_{3B,2} = 6.4$ Hz; 1 H, 3-H^B), 3,52 (dd, $J_{1,P} = 20.9, J_{1,2} = 3.8$ Hz; 1 H, 1-H), 3,56 (br. s; 1 H, mit D₂O austauschbar, OH), 3,86 – 4,17 (m; 4 H, OCH₂CH₃), 4,86 (m; 1 H, 2-H), 7,23 (m; 3 H, Aromaten-H), 7,41 (m; 1 H, Aromaten-H). MS (70 eV): m/e = 270 (10%, M^+), 252 (100%, $M - H_2O$), 224 (46%, $M - H_2O - C_2H_4$), 196 (93%, $M - H_2O - 2C_2H_4$). C₁₃H₁₉O₄P (270,3). Ber. C57,76, H 7,10. Gef. C57,33, H 6,95.

2-(R,S)-Acetoxy-indan-1-(R,S)-yl-phosphonsäure-diethylester (11)

Aus 10 mit Acetanhydrid/Pyridin. Ausb. 80%; Reinigung durch SC an Kieselgel (Laufmittel: Dichlormethan/Essigester 1.:1, $R_F = 0.5$). ¹H-NMR (250 MHz): 1,13 (t; 3 H, OCH₂CH₃), 1,34 (t; 3 H, OCH₂CH₃), 2,02 (s; 3 H, OCOCH₃), 2,97 (br. d, $J_{3A,3B} = 17,2$ Hz, 1 H, 3-H^A), 3,50 (dd, $J_{3A,3B} = 17,2$, $J_{2,3B} = 6,2$ Hz; 1 H, 3-H^B), 3,66 (br. d, $J_{1,P} = 23,0$ Hz, 1 H, 1-H), 3,79–4,21 (m; 4 H, OCH₂CH₃), 5,73 (tdd, $J_{2,P} = 11,1, J_{2,3B} = 6,2, J_{2,1} = J_{2,3A} = 1,6$ Hz, 1 H, 2-H), 7,26 (m; 3 H, Aromaten-H), 7,50 (m; 1 H, Aromaten-H).

Cyclisierung von 9 unter aprotischen Bedingungen

a) 5-H-2,3-Benzo-diazepin-1-yl-phosphonsäure-diethylester (15) als Hauptprodukt

Eine Lösung von 1.31 g (3.0 mmol) 9 in 6 ml wasserfreiem *DME* wurde unter Ar und Lichtausschluß mit 3 ml 1 N NaOC₂H₅ in Ethanol versetzt. Nach 2 hRühren bei Raumtemp. wurde im Vak. eingedampft. Eine Lösung des an der Ölpumpe getrockneten Na-Salzes 12 in 5 ml wasserfreiem DME wurde 3 h zum Sieden erhitzt, wobei sich allmählich Tos-Na abschied. Dieses wurde abgesaugt, das Filtrat im Vak, eingedampft und der Rückstand rasch über 150 g Kieselgel (Laufmittel Dichlormethan/Essigester 1:1) chromatographiert, wobei folgende Fraktionen isoliert wurden. 1) 50 mg 13, $R_F = 0.69$, gelbes Öl. ¹H-NMR $\begin{array}{c} (250 \ \mathrm{MHz}): & 1,33 \ (\mathrm{t}; \ 6 \ \mathrm{H}, \ \mathrm{OCH}_2 \mathrm{CH}_3), \ 4,18 \ (\mathrm{m}; \ 4 \ \mathrm{H}, \ \mathrm{OCH}_2 \mathrm{CH}_3), \ 5,44 \ (\mathrm{dd}, \\ J_{1',2'\mathrm{B}} = 11,0, \ J_{2'\mathrm{A},2'\mathrm{B}} = 1,3 \ \mathrm{Hz}; \ 1 \ \mathrm{H}, \ 2' \mathrm{H}^\mathrm{B}), \ 5,71 \ (\mathrm{dd}, \ J_{1',2'\mathrm{A}} = 17,4, \\ J_{2'\mathrm{A},2'\mathrm{B}} = 1,3 \ \mathrm{Hz}; 1 \ \mathrm{H}, \ 2' \mathrm{H}^\mathrm{A}), \ 6,83 \ (\mathrm{dd}, \ J_{1',2'\mathrm{A}} = 17,4, \ J_{1',2'\mathrm{B}} = 11,0 \ \mathrm{Hz}; 1 \ \mathrm{H}, \ 1' \mathrm{H}), \end{array}$ 7,20-7,56 (m; 4 H, Aromaten-H). 2) 110 mg eines tiefroten Öls, das sich rasch zersetzte und nicht weiter untersucht wurde. 3) 480 mg (57%) 15, $R_F = 0.26$, farbloses Öl. ¹H-NMR (250 MHz): 1,27 (t; 3 H, OCH₂CH₃), 1,42 (t; 3 H, $\begin{array}{l} \text{OCH}_2\text{CH}_3\text{)}, 2,83 \; (\text{dd}, J_{5,5'} = 12,5, J_{5,4} = 5,0 \; \text{Hz}, 1 \; \text{H}, 5 \cdot \text{H}), 3,46 \; (\text{dd}, J_{5,5'} = 12,5, J_{5,4'} = 5,0 \; \text{Hz}, 1 \; \text{H}, 5 \cdot \text{H}), 4,16 \; (\text{dd}, J_{5,5'} = 12,5, J_{5',4'} = 5,0 \; \text{Hz}, 5' \cdot \text{H}), 4,17 \; (\text{m}; 2 \; \text{H}, 0 \; \text{CH}_2\text{CH}_3), 4,39 \; (\text{m}; 2 \; \text{H}, 0 \; \text{CH}_2\text{CH}_3), 7,19 \; (\text{q}; 2 \; \text{CH}_3), 7,19 \; (\text{q}; 2 \; \text{CH}_3), 7,19 \; (\text{q}; 2 \; \text{CH}_3), 7,$ $J_{4.5'} = J_{4.5} = J_{4.P} = 5 \,\mathrm{Hz}, 1 \,\mathrm{H}, 4 \cdot \mathrm{H}), 7, 24 \,\mathrm{(br.~d}, J \approx 7, 5 \,\mathrm{Hz}, 1 \,\mathrm{H}, 6 \cdot \mathrm{H}), 7, 45 \,\mathrm{(br.~d)}$ $t, J \approx 7, 5$ Hz, 1 H) und 7,54 (br. t, $J \approx 7, 5$ Hz, 1 H), (7-H und 8-H), 8,09 (br. d, $J \approx 7.5 \,\text{Hz}, 1 \,\text{H}, 9 \,\text{H})$. MS (70 eV): $m/\text{e} = 280 \,(0.5\%, M^+), 253 \,(14\%, M - \text{HCN}),$ 225 (7%, \dot{M} – HCN – C₂H₄), 207 (14%), 144 (15%), 117 [M – P(\dot{O})(OEt)₂ – CN, 100%]. $C_{13}H_{17}N_2O_3P$ (280,3). Ber. C 55,70, H 6,12, N 9,99. Gef. C 55,02, H 6,37, N 9,14.

Bei Raumtemp. war 15 nur wenige Stunden stabil. Nach einigen Tagen bei Raumtemp. wurden durch Filtration über Kieselgel (Laufmittel Essigester/Methanol 19:1) farblose Kristalle vom Schmp. 132-134 °C ($R_F = 0.15$) erhalten. MS (FAB): 841 (0.14%, 3M + 1), 561 (0.16%, 2M + 1), 281 (100%, M + 1). Molmasse: 850 (dampfdruckosmometr. in CHCl_s).

b) 1-H-2,3-Benzodiazepin-1-yl-phosphonsäure-diethylester (14) als Hauptprodukt

Eine Lösung von 1,31 g (3,0 mmol) **9** in 6 ml wasserfreiem DME wurde unter Ar und Lichtausschluß mit 2,7 ml 1 N-NaOC₂H₅ in Ethanol versetzt und nach 2 h Rühren bei Raumtemp. wie bei a) weiter behandelt.

Durch SC an 80 g Kieselgel (Laufmittel Essigester/Dichlormethan 1 : 1) wurden nacheinander 120 mg (9%) **9**, ($R_F = 0.9$), 100 mg (12%) **13** ($R_F = 0.69$), 100 mg eines nicht näher untersuchten farblosen Öls vom $R_F = 0.60$ und 320 mg (38%) **14** ($R_F = 0.40$) als gelbes Öl erhalten. ¹H-NMR (250 MHz): 1,38 und 1,43 (2 t; 6 H, OCH₂CH₃), 3,25 (d; ¹J_{P,H} = 11,3 Hz; 1 H, 1-H), 4,40 und 4,48 (2 m; 4 H, OCH₂CH₃), 6,78 (d, $J_{5,4} = 9.2$ Hz, 1 H, 5-H), 7,43 (t; 1 H, 8-H), 7,54 (d; 1 H, 9-H), 7,69 (t; 1 H, H-7), 8,16 (2 d; J = 9.2 Hz, 2 H, 4-H + 6-H). MS (70 eV): m/e = 280 (M^+ , 2%), 252 ($M - N_2$, 22%), 224 ($M - N_2 - C_2H_4$, 12%), 196 ($M - N_2 - 2C_2H_4$, 64%), 115 [$M - N_2 - P(O)(OEt)_2$, 100%].

Isomerisierung von 14 zu 15

Eine Lösung von 100 mg (0,36 mmol) 14 in 3 ml wasserfreiem DME wurde nach Zugabe von 1 Tropfen ethanol. NaOC₂H₅-Lösung unter Ausschluß von Licht und unter Ar 20 min zum Sieden erhitzt. Danach wurde im Vak.

eingedampft und rasch über 5,0 g Kieselgel (Laufmittel Dichlormethan/Essigester 1:1) filtriert. Ausb. 70 mg (70%) 15, identisch mit dem aus 9 erhaltenen Produkt.

Cyclisierung von 13 zu 14

Eine Lösung von 10 mg 13 in 2 ml Dichlormethan wurde unter Lichtausschluß bei Raumtemp. aufbewahrt. Nach 7 d wurde im Vak. eingedampft und die Lösung des Rückstandes in CDCl_3 NMR-spektroskopisch untersucht. Aus der Integration der Dubletts bei 3,25 ppm (1-H von 14) und 5,44 bzw. 5,71 (CH₂=C von 13) wurde eine Cyclisierung im Ausmaß von 70% ermittelt.

Literatur und Anmerkungen

- ¹ Padwa A., Ku H., J. Org. Chem. 45, 3756 (1980) und dort zitierte Literatur.
- ² Closs G. L., Böll W. A., Angew. Chem. **75**, 640 (1963); Angew. Chem., Int. Ed. Engl. **2**, 399 (1963).
- ³ Closs G. L., Closs L. E., Böll W. A., J. Amer. Chem. Soc. 85, 3796 (1963).
- ⁴ Brewbaker J. L., Hart H., J. Amer. Chem. Soc. 91, 711 (1969).
- ⁵ Sharp J. T., Findlay R. H., Thorogood P. B., J. Chem. Soc. Perkin Trans 1 1975, 102.
- ⁶ Stanley K. L., Dingwall J., Sharp J. T., Naisby T. W., J. Chem. Soc. Perkin Trans 1 1979, 1433.
- ⁷ Bellesia F., Grandi R., Pagnoni U. M., J. Chem. Res. (S) 1981, 114.
- ⁸ Miyashi T., Nishizawa Y., Fujii Y., Mukai T., Heterocycles 16, 147 (1981).
- ⁹ Findlay R. H., Sharp J. T., Thorogood P. B., J. Chem. Soc., Chem. Commun. 1970, 909.
- ¹⁰ Bendall V. J., J. Chem. Soc., Chem. Commun. 1972, 823.
- ¹¹ Reid A. A., Sharp J. T., Sood H. R., Thorogood P. B., J. Chem. Soc., Perkin Trans. 1 1973, 2543.
- ¹² Munro D. P., Sharp J. T., Tetrahedron Lett. 21, 4109 (1980).
- ¹³ Hammerschmidt F., Zbiral E., Liebigs Ann. Chem. 1979, 492.
- ¹⁴ Penz G., Zbiral E., Monatsh. Chem. 113, 1169 (1982).
- ¹⁵ Öhler E., Zbiral E., Monatsh. Chem. **115**, 493 (1984).
- ¹⁶ Öhler E., El-Badawi M., Zbiral E., Tetrahedron Lett. 24, 5599 (1983).
- ¹⁷ Öhler E., El-Badawi M., Zbiral E., Chem. Ber., im Druck.
- ¹⁸ Saunders B. C., Simpson P., J. Chem. Soc. 1963, 3351.
- ¹⁹ Seyferth D., Paetsch J. D. H., J. Org. Chem. **34**, 1483 (1969).
- ²⁰ Pudovik A. N., Khusainova N. G., Timoshina T. V., Zh. Obshch. Khim. 44, 272 (1974); Chem. Abstr. 80, 121067 n (1974).
- ²¹ Pudovik A. N., Khusainova N. G., Timoshina T. V., Raevskaya O. E., Zh. Obshch. Khim. **41**, 1476 (1971); Chem. Abstr. **75**, 140933 e (1971).
- ²² Hartmann A., Regitz M., Phosphorus 5, 21 (1974).
- ²³ Pudovik A. N., Khusainova N. G., Zh. Obshch. Khim. 40, 697 (1970); Chem. Abstr. 73, 14 923 (1970).
- ²⁴ Pudovik A. N., Khusainova N. G., Zh. Obshch. Khim. 42, 2162 (1972); Chem. Abstr. 78, 72304 (1973).
- ²⁵ Grandberg J. J., Kost A. N., Zh. Obshch. Khim. **31**, 129 (1961); Chem. Abstr. **55**, 22292 (1961).
- ²⁶ Marmor R. S., Seyferth D., J. Org. Chem. 36, 128 (1971).
- ²⁷ Welter W., Hartmann A., Regitz M., Chem. Ber. 111, 3068 (1978).

- ²⁸ Szpala A., Tebby J. T., J. Chem. Soc., Perkin Trans 1 1981, 1363.
- ²⁹ Sekine M., Satoh M., Yamagata H., Hata T., J. Org. Chem. 45, 4162 (1980), und dort zitierte Literatur.
- ³⁰ Sekine M., Kume A., Nakajima M., Hata T., Chem. Letters **1981**, 1087, und dort zitierte Literatur.
- ³¹ In Lösung und beim Versuch zur Umkristallisation wandelten sich syn- und anti-3 b bzw. syn- und anti-4 e wieder in das ursprüngliche Isomerengemisch, um. Aus dem gleichen Grund können auch nur Schmelzintervalle für die jeweiligen Verbindungen angegeben werden.
- ³² Casanova J., Zahra J.-P., Tetrahedron Lett. 21, 1773 (1977).
- ³³ Karabatsos G. J., Vane F. M., Taller R. A., Hsi N., J. Amer. Chem. Soc. 86, 3351 (1964).
- ³⁴ Regitz M., Anschütz W., Liedhegener A., Chem. Ber. 101, 3734 (1968).
- ³⁵ Bamford W. R., Stevens T. S., J. Chem. Soc. 1952, 4735.
- ³⁶ Linstead P., J. Chem. Soc. **1929**, 2498.
- ³⁷ a) Alt G. H., Speziale A., J. Org. Chem. **31**, 1340 (1966); b) Darzens G., Rost H., C.R. Acad. Sci. **153**, 772 (1911).
- ³⁸ Pogosyan G. M., Karapetyan T. G., Matsoyan S. G., Zh. Org. Khim. 6, 139 (1970); Chem. Abstr. 72, 89985 g (1970).